CS 476 — Programming
Language Design

William Mansky

Class Project

* Work alone or in group of 2-3

* Project ideas:

— Write syntax, typing rules, and/or operational semantics for some
language or feature we won’t cover in class

— Design and implement a small domain-specific language

— Find an existing language definition (CompCert C semantics,
WebAssembly interpreter, etc.) and extend it/use it for something

* Project proposal first submission due 10/5

* [f you’re not sure what to do, come by office hours and we can
discuss!

u

L

Questions

Nobody has responded yet.

Hang tight! Responses are coming in.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Expressions and Commands: Syntax

E ::=<#> | <ident> C:=<ident> :=E
E+E|E-E|E*E C; C
<bool> skip
EandE | EorE if(E){C}else{C}
not E while(E) { C}
E=E
1f Ethen EelseE

Adding Control Flow

* With variables, assignment, and sequencing, we can write lists
of computations:

X 1 =0; X :=X+1;y :=X; X :=X+1

e Control flow lets us write more complicated patterns:

— Branching gives us commands that only happen sometimes
— Loops let us write variable-length programs

X := 1f 1+2=3 then 4 else 5 (had before)
if(1+2=3) { x := 4 } else { y := 5 } (needtoadd)

IMP: Syntax

E ::=<#> | <ident> C:=<ident> :=E
E+E|E-E|E*E C; C
<bool> skip
EandE | EorE if(E){C}else{C}
not E while(E) { C}
E=E

IMP: Syntactic Sugar

if(e){ c } = C:
if(e){ c } else { skip }

do{ c } while(e) =>
c; while(e){ c }

for(i = e; cond; incr) c =>
i := e; while(cond){
c; incr }

=<jdent> :=E

C; C

skip
if(E){C}else{C}
while(E) { C}

[Fe:1 T(x)=1 'cy:0k T'Fc,:ok

Fx:=e:0k ['+cq; ¢y :0K

Fe:bool T'Hecy:0k T Fcy:ok
I'-if(e){c } else {c,} :0k

[Fe:bool T'F c:ok
I' -while(e){c} : ok

u

L

Questions

Nobody has responded yet.

Hang tight! Responses are coming in.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

* Structural rule: e — o

if ethene; elsee, » if e’ thene, elsee,

| if true thene,; elsee, — ¢
 Computation rules:

if false thene; elsee, — e,

* Structural rule: (e, p) = (&', p)

(if(e){c1 } else {c; }h,p) = (if(e'){c1} else {c; },p)

1 (t 1
 Computation rules: (if(true){c, } else {c; },p) = (c1,p)

(if(false){c; } else {c; },p) = (c2,p)

IMP: Small-Step Semantics of Loops

(repeatc,p) =7

e Exercise: Try writing small-step semantic rules for the repeat
command, an infinite loop.

IMP: Small-Step Semantics of Loops

(repeatc,p) - (repeatc,p)

(c,p) = (c',p)

(repeatc,p) — (repeatc’,p’)

(repeat skip,p) — repeatc

But where do we get the ¢?

(repeatc,p) — (c; repeatc,p)

(C1; p) — (C{! p’)

(c15 c2,p) = (c5¢0,p") (skip; cz,p) = (cz,p)

u

L

Questions

Nobody has responded yet.

Hang tight! Responses are coming in.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

IMP: Small-Step Semantics of While

e Start with repeat:

(while(e){c},p) = (c; while(e){c}, p)

e Need to check the condition before each iteration

(while(e){c},p) = (if(e){ c; while(e){c} } else skip,p)

(while(not(x = 0)){ x :=x -1 },{x=2})—>
(if(not(x = ©)){x := x - 1; while ..}elseskip, {x=2})—..—-
(x := x - 1; while ., {x=2}) —>..—>

(while(not(x = 0)){ x := x - 1; while .. }, {x=1})—
(if(not(x = ©)){x := x - 1; while ..}elseskip, {x=1})—..-
(while(not(x = 0)){ .. }, {x=0}) = ... = (skip, {x =0})

(e,p) U true (cq,p) Up’ (e,p) U false (cy,p) U p’

(if(e){ci} else {c;},p) U p" (if(e){c1} else {c2},p) U p’

(e,p) Utrue (c,p) Up’ (while(e){c},p’) U p”
(while(e){c},p) U p"

(e,p) U false
(while(e){c},p) U p

let rec eval_cmd (c : cmd) (s : state) =

match ¢ with (e,p) U true (c,p) Up' (while(e){c},p") U p”
| While (e, ¢) -> (while(e){c},p) U p’
(match eval _exp e s with

| Some (BoolVal true) ->
(match eval cmd ¢ s with
| Some s” ->eval cmd (While (e, ¢)) &

(e,p) Utrue (c,p) Up’ (while(e){c},p’) U p”

(while(e){c},p) 4 p"”

?
(while(true){ skip },{}H U?

(e,p) Utrue (c,p) Up’ (while(e){c},p’) U p”
(while(e){c},p) U p”

(true, {}) U true (skip,{}) U {} (while(true){ skip },{}) U?

(while(true){ skip },{}) U?

(e,p) Utrue (c,p) Up’ (while(e){c},p’) U p”
(while(e){c},p) U p”

(true,{}) U true (skip,{}) ¥ {} (while(tr‘ue){" skip },{}) U7

(while(true){ skip },{}) U?
e SO we can never prove it evaluates to anything!

u

L

Questions

Nobody has responded yet.

Hang tight! Responses are coming in.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

	Slide 0: CS 476 – Programming Language Design
	Slide 1: Class Project
	Slide 2
	Slide 3: Expressions and Commands: Syntax
	Slide 4: Adding Control Flow
	Slide 5: IMP: Syntax
	Slide 6: IMP: Syntactic Sugar
	Slide 7: IMP: Types
	Slide 8
	Slide 9: Expressions: Small-Step Semantics
	Slide 10: IMP: Small-Step Semantics
	Slide 11: IMP: Small-Step Semantics of Loops
	Slide 12: IMP: Small-Step Semantics of Loops
	Slide 13: IMP: Small-Step Semantics of Loops
	Slide 14: IMP: Small-Step Semantics of Loops
	Slide 15
	Slide 16: IMP: Small-Step Semantics of While
	Slide 17: IMP: Small-Step Semantics of While
	Slide 18: IMP: Big-Step Semantics
	Slide 19: IMP: Interpreter
	Slide 20: IMP: Infinite Loops
	Slide 21: IMP: Infinite Loops
	Slide 22: IMP: Infinite Loops
	Slide 23

